Я создала и активно наполняю телеграм-канал "Перець". Это лучшие карикатуры из легендарного журнала, начиная с 1922 года.
Заходите, подписывайтесь:
ПАТРИК ПРИНГЛ "ПРИКЛЮЧЕНИЯ ПОД ВОДОЙ", 1963
ГЛАВНАЯ СТРАНИЦА / МЕНЮ САЙТА / СОДЕРЖАНИЕ ДАННОЙ СТАТЬИ
Гидроэлектростанции на озере Инверлох понадобился водолаз для проведения каких-то подводных работ. Дело было не особенно сложное. В этом озере не бывает приливов, и даже не рассказывают страшных историй о его обитателях. Озеро глубокое, но глубина сама по себе не обязательно сопряжена с опасностью. Джимми Мэрнс, взявшийся за эту работу, считал, что задача его довольно проста. Он был одним из опытнейших водолазов Англии и чувствовал себя в скафандре настолько свободно, что мог даже плавать саженками.
Работая в озере на глубине 170 футов, Мэрнс случайно порвал скафандр. Как только он заметил, что внутрь проникает вода, он попросил поднять его на поверхность. Наверху он немедленно снял порванный скафандр, надел другой и снова погрузился на глубину 170 футов. Но тут он вдруг почувствовал невыносимый холод и вынужден был опять выйти из воды. Когда онемение тела прошло, он спустился в третий раз, но холод снова выгнал его. Поднимаясь на поверхность в последний раз, он почувствовал себя настолько плохо, что не знал, выживет ли вообще.
Его отправили с ночным поездом в Лондон, где немедленно положили в университетскую больницу. Оттуда врачи перевели его в научно-исследовательский центр Зибе-Гормана (фирма, учрежденная Августом Зибе), где поместили в стальную цилиндрическую камеру, в которой он должен был дышать сжатым воздухом. К этому времени он соврём расхворался: кружилась голова, сдавило грудь, болели руки и ноги. Это были симптомы ужасной кессонной болезни - водолазного паралича, или, выражаясь языком водолазов, "скрючивания".
(Кессонная болезнь. О кессонной болезни стало известно более чем 100 лет назад. Это заболевание часто наблюдалось среди строителей, работавших в кессонах при сооружении мостов через реки или подземных туннелей; поэтому оно и получило название кессонной болезни. Известно, что кессонная болезнь также может возникнуть у водолазов во время декомпрессии или после выхода на поверхность, у подводников при выходе из затонувшей лодки и у летчиков на высоте более 9 км.
Для всех этих профессий общим является то, что в процессе работы люди переходят из среды с более высоким давлением воздуха в среду с более низким давлением. Такой переход называется декомпрессией. Поэтому кессонное заболевание впоследствии стали называть декомпрессионной болезнью.
Причиной кессонной (декомпрессионной) болезни является то, что газовые пузырьки, образующиеся в организме в результате быстрого перехода от более высокого давления воздуха к более низкому, закупоривают мелкие кровеносные сосуды, а это приводит к нарушению кровообращения, а следовательно, и питания отдельных участков тканей, деятельности головного мозга и организма в целом. Для избежания кессонной болезни при водолазных работах применяется так называемый ступенчатый подъем).
За Мэрнсом тщательно наблюдали до тех пор, пока не исчезли признаки заболевания. После этого давление воздуха в камере стали постепенно понижать и в конце концов довели его до нормального атмосферного. В камере, называвшейся рекомпрессионной, он пробыл пять с половиной часов. Затем его отправили на санитарной машине обратно в больницу, сделали массаж и подвергли электротерапии. Через семь недель его выписали, и вскоре он возобновил подводные спуски. Подобно Триклу, он едва не лишился жизни, хотя на теле его и не было следов зубов акулы. Его чуть было не убили пузырьки азота, образовавшиеся в крови.
Единственным фактором, позволившим Мэрнсу спуститься на глубину 170 футов, явилось то, что человек может дышать сжатым воздухом. Иначе глубоководные погружения были бы невозможны. Если бы Мэрнс дышал на такой глубине воздухом под нормальным атмосферным давлением, он умер бы, даже не успев порвать скафандр. И умер бы вовсе не от удушья. Чтобы представить себе, что с ним могло случиться, достаточно опустить на ту же глубину герметически закупоренную жестяную банку, наполненную обычным воздухом. Банка будет раздавлена задолго до того, как достигнет глубины 170 футов, где давление составляет почти шесть тонн на квадратный дюйм площади. Если этому колоссальному весу не противопоставить равное ему давление воздуха, вдыхаемого водолазом, тело последнего будет раздавлено.
К счастью, люди могут свободно дышать сжатым воздухом без заметных вредных последствий. Однако внешние признаки бывают обманчивы, и на первом этапе применения скафандров спуски на значительные глубины иногда приводили к необъяснимым в то время несчастным случаям. Нередко водолазы, совершавшие глубоководные спуски, возвращались на поверхность внешне совершенно здоровыми, однако впоследствии тяжело заболевали.
Примерно в середине XIX в. произошел такой случай. Три водолаза, проходившие обучение в Марселе и Тулоне, вышли из воды, чувствуя себя совершенно нормально, но полчаса спустя заболели, а через два часа умерли. Бывали случаи, когда водолазы, поднявшись на поверхность, испытывали боль в конечностях и иногда - в области грудной клетки, головокружение, удушье, ослабление зрения и слуха. Были случаи паралича, особенно паралича ног, и пострадавшие на всю жизнь оставались инвалидами. Были случаи со смертельным исходом. И никто не знал - отчего.
От этой таинственной болезни страдали не только водолазы. В 1841 г. было изобретено новое устройство для подводных работ под названием "кессон". Простой вертикальный железный цилиндр, открытый с обеих сторон, погружался в воду. Нижний его конец покоился на дне, верхний же возвышался над поверхностью. Цилиндр освобождался от воды путем подачи в него сверху сжатого воздуха. Некоторые работавшие в кессонах люди жаловались потом на боль в суставах, но это приписывалось действию сырости.
В 1862 г. кессоны были применены на строительстве железнодорожного виадука. В результате один инженер заболел параличом, а двое рабочих умерли. Против предпринимателей, обвиненных в нарушении правил безопасности, было возбуждено судебное дело, однако иск пришлось отклонить на том основании, что причина смерти осталась невыясненной. Сходство между "водолазным параличом" и "кессонной болезнью" было явным, и оно со всей очевидностью трагически подтвердилось пять лет спустя.
Двадцать четыре водолаза, пользовавшиеся скафандрами конструкции Зибе, работали по найму в Эгейском море и добывали губки. Десять из них умерли. Все они спускались на большие глубины, старались оставаться под водой как можно дольше и поднимались на поверхность с максимальной скоростью.
К этому времени общепризнанной стала теория, объяснявшая болезнь повышенным давлением, и некоторые подозревали, что она является следствием чрезмерно быстрой декомпрессии. Однако истинная природа кессонной болезни, как ее теперь называют, оставалась тайной до тех пор, пока она не была изучена французским ученым Полем Бертом.
Берт интересовался проблемами дыхания альпинистов и воздухоплавателей в условиях пониженного давления воздуха. Попутно он занимался исследованием дыхания водолазов, поскольку давление воздуха, которым они дышат, измеряется той же шкалой, только по другую сторону нулевой отметки.
После многолетних исследований и практических опытов он наконец открыл те естественные законы, которые легли в основу наших современных знаний о воздействии давления на всех, кто летает, взбирается на вершины гор и спускается в морские глубины.
***
Вдыхаемый нами воздух растворяется в крови и вместе с нею попадает в ткани. Чем выше давление, тем больше воздуха растворяется в крови. Воздух состоит в основном из кислорода и азота, причем кислород расходуется в тканях. Азот же остается неиспользованным, поэтому, когда водолаз дышит сжатым воздухом, у него в организме быстро накапливается больше азота, чем может обычно разойтись по крови и тканям. Пока давление поддерживается на высоком уровне, водолаз не чувствует боли. В этом отношении водолаза можно сравнить с бутылкой, наполненной лимонадом. Шипучая жидкость образуется путем накачивания газа в бутылку под давлением. Пока давление высокое, газ в лимонаде находится в растворенном состоянии. Если же давление ослабить, откупорив бутылку, газ устремится наружу. То же происходит с водолазом, если давление воды вдруг прекращается: находящийся в крови избыточный азот рвется наружу. Правда, лимонад наполняется не азотом, а углекислым газом, но это не меняет дела.
Опасность распознается не сразу, поскольку сжатым воздухом дышится так же легко, как и обычным; в этом убедилась группа муниципальных советников, посетившая строительство новой штольни. По этому случаю советники захватили с собой бутылку шампанского. Каково же было их удивление, когда, откупорив бутылку, они обнаружили, что вино "выдохлось". Шампанское как и лимонад, газируется, но повышенное давление в штольне не позволило углекислому газу выйти из бутылки. Муниципальные советники не знали этого, и все, кроме одного, отказались от шампанского. Этот один выпил три стакана, заткнул бутылку пробкой и сунул ее в карман.
Потеха началась после того, как советники поднялись в тамбур между штольней и поверхностью, где давление постепенно понижалось. Тут и раздался громкий взрыв, и один из советников прокричал, что его застрелили. Оказалось, выстрелила бутылка, и в лицо ему угодила пробка. Углекислый газ, содержавшейся в бутылке, стал пениться. То же происходило и в желудке человека, выпившего три стакана "выдохнувшегося" шампанского. Он отделался легкими коликами в животе. Другое дело, если бы пузырьки азота оказались в крови к тканях: они принесли бы гораздо больше вреда. Воздушная пробка, образовавшаяся в суставе, может привести к скрючиванию конечности - отсюда и происходит название "скрючивание". Пробки в позвоночнике вызывают паралич ног, а попадание пузырьков азота в сердце приводит к смерти.
К счастью для водолазов, кровь гуще воды, поэтому образование пузырьков в ней затруднено, если давление не понижается слишком резко. Профессор Берт установил, что если давление уменьшается постепенно, кровь и ткани могут избавиться от избыточного азота и пузырьки образовываться не будут. Кессонной болезни, следовательно, можно избежать, если водолаз будет подниматься медленно.
Когда у Джимми Мэрнса порвался костюм, он не мог медлить с подъемом. Однако, переодевшись, он снова поспешил в воду. Ему не пришлось бы ложиться в больницу (более того, опасность вообще была бы исключена), если бы на месте оказалась рекомпрессионная камера.
Рекомпрессионная камера действует по тому же принципу, что и тамбур, в который заходили члены муниципального совета на пути из штольни. Если бы близ озера Инверлох была рекомпрессионная камера, Мэрнс был бы помещен в нее тотчас по выходе на поверхность. Он стал бы сразу же дышать тем же сжатым воздухом, что и на глубине 170 футов. Давление в камере уменьшалось бы постепенно до тех пор, пока не восстановилось нормальное атмосферное давление. После этого Мэрнс, освободив кровь и ткани от избыточного азота, вышел бы из камеры.
Рекомпрессионная камера помогла уменьшить одну из самых серьезных опасностей, с которыми связаны глубоководные спуски, и спасти много жизней. Она спасла, в частности, жизнь водолазу Майклсу, когда Том Эди вытащил его в бессознательном состоянии во время работ по спасанию затонувшей американской подводной лодки С-4.
***
Подводная лодка С-4 была случайно повреждена американским эсминцем в 1927 г. и затонула на глубине свыше тысячи футов. Из числа лучших водолазов военно-морского флота США было отобрано и послано на спасательные работы восемь человек. Среди них оказался шотландец Том Эди. Он был признанным мастером водолазного дела, героем многих приключений, едва не стоивших ему жизни.
Работы пришлось вести в море, в условиях колоссального давления. Погрузившись в водолазном снаряжении на дно первым, Том Эди постучал по корпусу подводной лодки и с радостью услышал ответный стук находившихся внутри нее людей.
К главной балластной цистерне подводной лодки прикрепили шланг, через который сверху стали подавать воздух, чтобы придать судну плавучесть, достаточную для всплытия на поверхность. Но лодка не всплывала.
Между тем погода ухудшалась. Водолаз Майкле спустился к лодке еще с одним шлангом, но в это время оба его линя зацепились за корпус судна. Всякая попытка освободить один линь лишь крепче затягивала другой.
- Я запутался, - сообщил он по телефону.
- Посылаем к вам Эди, - последовал ответ. Упоминание этого имени всегда действовало успокаивающе. Но Эди в это время уже лежал на своей койке и отдыхал после утомительного спуска. Пока его снова одели, Майклс уже не подавал о себе никаких вестей. Тяжелая морская вода затянула его лини еще туже. Подводная лодка крепко держала его лицом к палубе. Он не мог больше двигаться и говорить, так как потерял сознание.
Эди начал спуск. При нем был мощный подводный светильник, ножницы, молоток и большое зубило. Он нашел Майклса и сумел несколько высвободить его, чтобы поставить ногами вниз, однако оба линя так и оставались зажатыми. Эди обнаружил, что воздушный шланг Майклса попал в пробоину наружной обшивки лодки и освободить его было невозможно.
- Пришлите мне ножовку, - сказал он по телефону. Ножовка была спущена по воздушному шлангу. О прибытии ее он узнал, когда она ударилась о его шлем. Эди отвязал ее и начал пилить поврежденную обшивку. Он пилил и работал зубилом в течение сорока минут почти до полного изнеможения. Наконец металл был распилен, и шланг Майклса освобожден. Майклс поднялся немного и снова остановился: спасательный конец был все еще зажат. Эди попытался отцепить его, но вдруг почувствовал холод. Острый край обшивки порезал его костюм, и в него начала проникать вода. Воздух, подававшийся в шлем, удерживал воду на уровне шеи, но достаточно ему было наклониться вперед или в сторону, как он захлебнулся бы.
Продолжая действовать, Эди отцепил спасательный конец и отправил Майклса в бессознательном состоянии наверх. Потом стал подниматься сам. Он находился под водой более часа. Как только Эди выбрался наверх, его сразу же поместили в рекомпрессионную камеру. Майклс, пробывший под водой более трех часов и все еще не приходивший в сознание, находился вместе с ним. На следующий день Майклса срочно отправили в больницу, где он, пережив опасный кризис, выздоровел.
Хотя людей, оставшихся в затонувшей подводной лодке, спасти не удалось, Эди за проявленное им мужество был награжден орденом Почета.
Рекомпрессионная камера спасла Майклса и Эди от кессонной болезни. Она спасала многих других, кто не мог спуститься снова для декомпрессии. Она спасала многих водолазов, которые вынуждены были спешно подниматься на поверхность из-за резкой перемены погоды, делавшей дальнейшее пребывание под водой невозможным.
Случалось, что в крови водолаза, уже переполненной азотом, пузырьки азота начинали образовываться даже до того, как он достигал поверхности, и тогда рекомпрессия должна была заставить эти пузырьки раствориться, после чего допускалось постепенное понижение давления.
***
Рекомпрессионная камера предназначена для оказания неотложной помощи. Вернейший способ избежать кессонной болезни - медленный подъем. Профессор Берт указывает, что подъем должен быть ступенчатым, с одинаковой скоростью.
Указанный способ применялся пятьдесят лет назад. А потом английский ученый усовершенствовал его. Этот ученый - профессор Дж. С. Холдейн, член Комитета по глубоководным спускам, впервые созданного английским Военно-морским министерством.
После проведения большого числа опытов на животных и людях Холдейн установил, что ступенчатый подъем, с задержками на определенных глубинах для декомпрессии, быстрее и безопаснее для водолазов, чем медленный и равномерный подъем. Это открытие было с успехом проверено испытаниями, проведенными в 1906 г. лейтенантом Даманом и артиллерийским офицером Катто из Королевского флота. Они увеличили предел глубины безопасного спуска до 204 футов.
Холдейн составил таблицу режима декомпрессии, точно указывающую продолжительность остановок водолаза на каждой ступени подъема в зависимости от глубины спуска и времени пребывания на этой глубине. Если водолаз опускался на тридцать три фута, то никакой декомпрессии не требовалось. Получасовое пребывание на глубине 66 футов требовало одной остановки на пять минут для декомпрессии; часовое пребывание на той же глубине - двух остановок общей продолжительностью тринадцать минут; в то же время всего лишь семиминутное пребывание водолаза на глубине 204 футов требовало двадцати минут на подъем с пятью остановками, а двенадцатиминутное пребывание на той же глубине - тридцати двух минут с шестью остановками. Пребывание на глубине 204 футов дольше двенадцати минут требовало гораздо более продолжительной декомпрессии, но и при этом не считалось вполне безопасным.
Такие медленные подъемы с многочисленными и длительными остановками не только неприятны, но и не всегда практически возможны. Они утомительны и сами по себе, а пребывание в холодной воде, да еще во время сильных приливов, делает их просто изнурительными и нередко -опасными. Ввиду этого система Холдейна почти не позволяла выполнять на глубине 204 футов какую- либо полезную работу до тех пор, пока сэр Роберт X. Дэвис, служащий фирмы "Зибе, Горман и компания", не разработал новый способ декомпрессии. Он изобрел прибор, называемый "подводной камерой Дэвиса".
Указанная камера подвешивается к лебедке или крану, находящемуся на борту водолазного судна, и имеет в дне люк, через который водолаз может проникнуть внутрь на первой же стадии декомпрессии. Пока камеру тянут вверх, находящийся в ней водолаз может продолжать декомпрессию, уже будучи изолирован от воды. Давление внутри камеры может постепенно уменьшаться в соответствии с таблицей.
Дэвис установил также, что продолжительность декомпрессии может быть сокращена, если в камеру вместо воздуха подавать кислород. В соответствии с этим была разработана новая таблица. Теперь водолазу после двенадцатиминутного пребывания на глубине 204 футов требовалась для декомпрессии уже двадцать одна минута, причем в течение семнадцати минут он находился в сухой камере. Кроме того, предел глубины безопасного погружения был увеличен до 300 футов.
Новые камеры и таблица были проверены вторым Комитетом по глубоководным спускам военно-морского министерства, созданным в 1930 г. В Лох-Файн были осуществлены спуски на глубину 320 футов. Но на этой глубине были обнаружены две невидимые опасности: азотная и кислородная.
Прежде азот не считался опасным, поскольку можно было избежать образования газовых пузырьков, не допуская чрезмерно быстрой декомпрессии. Теперь же выяснилось, что на глубине примерно 240 футов (а для некоторых водолазов и меньше) сжатый азот действует на мозг водолаза, как наркотическое средство. Степень его воздействия варьируется в зависимости от организма водолаза, но обычно азот затуманивает сознание человека, делает его легкомысленным и слишком веселым. Многие водолазы утверждают, что азот действует на них опьяняюще, поэтому и труд их становится менее производительным. Кроме того (и это самое главное), под действием азота водолаз становится опасным для самого себя. Легкое, безответственное, безрассудное отношение к делу - не та норма поведения, которая должна быть присуща глубоководному водолазу.
Второй невидимый враг - кислородное отравление - открыт профессором Бертом. Он испытал кислород как средство ускорения декомпрессии и пришел к выводу, что вдыхание чистого кислорода на глубине более 33 футов опасно. Если же вдыхать кислород в смеси с обычным воздухом, то его отравляющее действие сказывается на глубине около 400 футов. Фактически опасность появляется уже на глубине 300 футов.
Таким образом, стало ясно, что при пользовании сжатым воздухом предел безопасного погружения уже достигнут и что для спуска на большие глубины требовалась какая-то новая газовая смесь. В нее должен входить кислород, необходимый для поддержания жизни; при этом во избежание отравления кислорода в смеси должно быть относительно меньше, чем в атмосферном воздухе. Что касается азота, то он не нужен и не пригоден для такой смеси. Задача заключалась в том, чтобы найти газ, наиболее пригодный для смешивания с кислородом.
Была испытана водородно-кислородная смесь, оказавшаяся идеальной для дыхания, но она, к сожалению, способна взрываться. Опасность взрыва исчезает лишь в случае, если количество кислорода в смеси составляет очень незначительный процент. Сын профессора Холдейна установил, что смесь может быть безопасной при условии, если одна часть кислорода приходится на двадцать четыре части водорода. Но такое соотношение недостаточно для поддержания жизни человека, во всяком случае, при нормальном атмосферном давлении. Однако на глубине 100 футов возросшее давление увеличивает количество кислорода в четыре раза. Одновременно возрастает в четыре раза и количество водорода, что, однако, не снижает ценности содержащегося в смеси кислорода и в то же время устраняет опасность взрыва.
Таким образом, оставалось преодолеть лишь одно препятствие - стофутовый рубеж глубины. Арно Зеттерстром молодой шведский инженер, предполагал, что этого можно достичь, если в начале и в конце спуска пользоваться обычным сжатым воздухом. В 1944 г., после четырех лет научных изысканий и опытов, он проверил свою теорию. Зеттерстром дышал сжатым воздухом до тех пор, пока не достигал стометровой глубины, а затем переключался на газовую смесь, состоявшую из 4% кислорода и 96% водорода. Так он погружался на глубину 363 футов. Поднимаясь, он снова останавливался на стофутовом рубеже и переключался на сжатый воздух. Погружение было прекрасно продумано и осуществлено, и Зеттерстром не испытал никаких вредных последствий. Годом позже он спустился на глубину 528 футов.
Зеттерстром не искал славы любой ценой. Конечно, он был смел, дерзок и решителен, но отнюдь не безрассуден. Его спуск и на этот раз был тщательно подготовлен и очень умело выполнен. Зеттерстром вполне заслуживал успеха, и не его вина, что эксперимент закончился столь трагично.
Во время подъема он должен был пройти ступенчатую декомпрессию, основанную на собственных расчетах, ибо никаких таблиц для такой глубины тогда еще не было разработано. Все шло хорошо, пока он не поднялся до глубины 165 футов. Разумеется, все сошло бы благополучно, если бы не ужасная ошибка подручных, находившихся на поверхности. Они не поняли совершенно ясных и простых инструкций и непрерывно тянули водолаза вверх. Он проскочил не только 165-футовую, но и последнюю декомпрессионную ступень и, что самое неприятное, 100-футовый рубеж, где ему следовало задержаться, чтобы снова переключиться на сжатый воздух. Сами того не сознавая, эти люди убивали его, а он был бессилен чем-либо помешать. По мере того как понижалось давление, кислорода становилось все меньше и меньше, и Зеттерстром потерял сознание еще до того, как достиг поверхности. Он умер на борту судна. Это был весьма трагический случай в водолазной практике.
***
Между тем проводились опыты с кислородно-гелиевой смесью. Гелий обладает важными преимуществами перед всеми другими испытывавшимися газами.
Он лишен опасных опьяняющих свойств, присущих азоту в условиях большого давления, и взрывчатых свойств, присущих водороду. Кислородно-гелиевая смесь может без риска подаваться с поверхности на дно и является идеальной для дыхания на большой глубине.
Американский физик Элиху Томсон предложил применить кислород и гелий при спуске под воду. В США же был проведен и первый опыт. Установлено, что хотя гелий под давлением (в отличие от азота) и не опьяняет водолаза и не толкает его на легкомысленные поступки, но он тоже может вызвать кессонную болезнь, если не производить ступенчатую декомпрессию.
Известно, что гелий поглощается и выделяется быстрее азота, поэтому первая остановка должна быть сделана на большей глубине, нежели при дыхании азотом.
Военно-морским флотом США была составлена специальная декомпрессионная таблица, рассчитанная на кислородно-гелиевую смесь. Эта таблица увеличивает предел безопасного спуска до глубины, намного превышающей 300 футов. Опасности кислородного отравления можно избежать, если соотношение компонентов смеси привести в соответствие с глубиной погружения.
Английское Военно-морское министерство начало производить опыты с кислородно-гелиевой смесью в 1946 г. В следующем году эта смесь была применена при спуске под воду в Лox-Файн, а в 1948 г. старшина Уилфред Боллард достиг грунта на глубине 540 футов.
Я создала и активно наполняю телеграм-канал "Перець". Это лучшие карикатуры из легендарного журнала, начиная с 1922 года.
Заходите, подписывайтесь:
⇦ Ctrl предыдущая страница / следующая страница Ctrl ⇨
ГЛАВНАЯ СТРАНИЦА / МЕНЮ САЙТА / СОДЕРЖАНИЕ ДАННОЙ СТАТЬИ