ШВЕЦОВ К.И., БЕВЗ Г.П.
СПРАВОЧНИК ПО ЭЛЕМЕНТАРНОЙ МАТЕМАТИКЕ
АРИФМЕТИКА, АЛГЕБРА, 1965


ГЛАВНАЯ СТРАНИЦА / МЕНЮ САЙТА

Листание страниц: CTRL + ← или CTRL + →

ПОИСК ПО САЙТУ:

СОДЕРЖАНИЕ ДАННОЙ СТАТЬИ

35. Задачи на пропорциональные величины

1. Простое тройное правило. Из задач на пропорциональные величины наиболее часто встречаются задачи на так называемое простое тройное правило. В этих задачах даны три числа и требуется определить четвертое, пропорциональное к ним.

Задача 1. 10 болтов весят 4 кг. Сколько весят 25 таких болтов? Такие задачи можно решать несколькими способами.

Решение I (способом приведения к единице).

1) Сколько весит один болт?

4 кг : 10 = 0,4 кг.

2) Сколько весят 25 болтов?

0,4 кг · 25 = 10 кг.

Решение II (способом пропорций). Так как вес болтов прямо пропорциональный их количеству, то отношение весов равно отношению штук (болтов). Обозначив искомый вес буквой х, получим пропорцию:

х : 4 = 25 : 10,

откуда

(кг)

Можно рассуждать и так: 25 болтов больше 10 болтов в 2,5 раза. Следовательно, они тяжелее 4 кг тоже в 2,5 раза:

4 кг · 2,5 = 10 кг.

Ответ. 25 болтов весят 10 кг.

Задача 2. Первое зубчатое колесо делает 50 об/мин. Второе зубчатое колесо, сцепленное с первым, делает 75 об/мин. Найти число зубьев второго колеса, если число зубьев первого равно 30.

Решение (способом приведения к единице). Оба сцепленные зубчатые колеса передвинутся за минуту на одинаковое число зубьев, поэтому число оборотов колес обратно пропорционально числу их зубьев.

50 обор. - 30 зуб.

75 обор. - х зуб.

х : 30 = 50 : 75; (зубьев).

Можно рассуждать и так: второе колесо делает оборотов в 1,5 раза больше первого (75 : 50 = 1,5). Следовательно, оно имеет зубьев в 1,5 раза меньше первого:

30: 1,5 = 20 (зубьев).

Ответ. 20 зубьев.

2. Сложное тройное правило. Задачи, в которых по данному ряду соответствующих друг другу значений нескольких (более двух) пропорциональных величин требуется найти значение одной из них, соответствующее другому ряду данных значений остальных величин, называют задачами на сложное тройное правило.

Задача. 5 насосов в течение 3 ч выкачали 1800 ведер воды. Сколько воды выкачают 4 таких насоса в течение 4 ч?

Решение.

5 нас. 3 ч - 1800 вед.

4 нас. 4 ч - х вед.

1) Сколько ведер воды выкачал 1 насос в течение 3 ч?

1800 : 5 = 360 (ведер).

2) Сколько ведер воды выкачал 1 насос в течение 1 ч?

360 : 3 = 120 (ведер).

3) Сколько воды выкачают 4 насоса за 1 ч?

120 · 4 = 480 (ведер).

4) Сколько воды выкачают 4 насоса за 4 ч?

480 · 4 = 1920 (ведер).

Ответ. 1920 ведер

Сокращенное решение по числовой формуле:

(ведер).

3. Пропорциональное деление

Задача. Разделить число 100 на две части прямо пропорционально числам 2 и 3,

Эту задачу следует понимать так: разделить 100 на две части, чтобы первая относилась ко второй, как 2 к 3. Если обозначить искомые числа буквами х 1 и х 2 то эту задачу можно сформулировать и так. Найти х 1 и х 2 такие, чтоб

х 1 + х 2 = 100,

х 1 : х 2 = 2 : 3.

⇦ Ctrl предыдущая страница / страница 50 из 168 / следующая страница Ctrl ⇨
мобильная версия страницы 



cartalana.orgⒸ 2008-2018 контакт: koshka@cartalana.org